Nuclear Verification
The Conclusion of Safeguards Agreements and of Additional Protocols

Protocol Additional to the Agreement between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities

Recommended Action

- It is recommended that the Board authorize the Director General to conclude with the Government of India, and subsequently to implement, the additional protocol that is the subject of this note.
Nuclear Verification
The Conclusion of Safeguards Agreements and of Additional Protocols

Protocol Additional to the Agreement between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities

1. In July 2008, at the request of the Government of India, the Agency began discussions with India on the text of a Protocol Additional to the Agreement between the Government of India and the International Atomic Energy Agency for the Application of Safeguards to Civilian Nuclear Facilities (the Safeguards Agreement). The negotiations were conducted in accordance with the request made by the Board of Governors to the Director General in approving the text of the Model Protocol Additional to Agreement(s) between State(s) and the International Atomic Energy Agency for the Application of Safeguards (hereinafter referred to as the “Model Additional Protocol”) that the Director General negotiate additional protocols with “… other States that are prepared to accept measures provided for in the Model Protocol in pursuance of safeguards effectiveness and efficiency objectives”.

2. In a letter dated 8 September 2008 to the Director General, the Chairman of the Atomic Energy Commission of India, recalling their discussion on the subject on 30 July 2008, identified the important elements for the Indian additional protocol. During subsequent meetings between representatives of India and the Secretariat of the Agency, additional measures which would serve the objectives of safeguards effectiveness and efficiency were discussed. In a letter dated 10 February 2009, India reaffirmed its position, as stated in its 8 September 2008 letter, with regard to the specific measures which India was prepared to accept for inclusion in the additional protocol, and requested the Secretariat to prepare on this basis a draft text for further discussions. A draft additional protocol was forwarded by the Agency to India under cover of a letter dated 13 February 2009.

3. Following consultations between representatives of India and the Agency, India notified the Agency, in a letter dated 25 February 2009 to the Assistant Director General for External Relations and Policy Coordination from the Resident Representative of India to the IAEA that the Government of India was prepared to accept the revised draft text, a copy of which is provided in the Attachment hereto.

4. The provisions in the draft Additional Protocol with India are based on the text of those provisions contained in the Model Additional Protocol to which India has agreed. These relate to: the submission of certain information; the designation of, and visas for, inspectors; and communications

1 The text of the Safeguards Agreement is reproduced in document GOV/2008/30.
2 Reproduced in document INFCIRC/540(Corr.).
systems. The draft text also includes the standard provisions on the protection of confidential information.

5. The draft text consists of the following:

 (a) A preamble, which is based on the text of the preamble of the Model Additional Protocol, and, at the request of India, contains two new preambular paragraphs;

 (b) Article 1.a., on the relationship between the Protocol and the Safeguards Agreement, which corresponds to Article 1 of the Model Additional Protocol.

 (c) Article 1.b. was added at the request of India to underscore the scope of India’s Safeguards Agreement and the implementation of the Protocol;

 (d) Article 2.a.(i), on the provision of information concerning exports of certain source material, which is based on Article 2.a.(vi)(b) of the Model Additional Protocol;

 (e) Article 2.a.(ii), on the provision of information on exports of specified equipment and non-nuclear material listed in the Annex, which correspond to Article 2.(ix)(a) and Annex II of the Model Additional Protocol;

 (f) Article 2.b., which is based on Article 2.c. of the Model Additional Protocol, on the provision of amplifications or clarifications of information submitted under Article 2 insofar as relevant for the purpose of safeguards in a State that has accepted comprehensive safeguards; India has confirmed to the Agency that it will apply this provision in connection with any State which has undertaken a legal obligation to accept safeguards on all of its nuclear activities;

 (g) Article 3, specifying the frequency and timing of the submission of the information referred to in Article 2.a., which correspond to Articles 3.c. and 3.d of the Model Additional Protocol;

 (h) Article 4, on the designation of inspectors, which corresponds to Article 11 of the Model Additional Protocol;

 (i) Article 5, on visas, which corresponds to Article 12 of the Model Additional Protocol;

 (j) Article 6, on communications systems, which corresponds to Article 14 of the Model Additional Protocol;

 (k) Article 7, on the protection of confidential information, which corresponds to Article 15 of the Model Additional Protocol;

 (l) Article 8, on the status and amendment of the Annex containing the list of specified equipment and non-nuclear material to be reported pursuant to Article 2.a.(ii) of the draft Additional Protocol, which is based on Article 16 of the Model Additional Protocol;

 (m) an Annex containing the list of specified equipment and non-nuclear material to be reported pursuant to Article 2.a.(ii) of the draft Additional Protocol, which corresponds to Annex II of the Model Additional Protocol.

6. The following additional adjustments to the text of the corresponding provisions of the Model Additional Protocol have been made in the draft Additional Protocol with India:

 (a) to the title and to the first preambular paragraph, to refer to the specific Safeguards Agreement;

 (b) to the preamble, to which are added two new paragraphs (the third and fourth paragraphs) referring to India’s preparedness to cooperate with the Agency in the further development of
peaceful uses of nuclear energy and its wish to expand civil nuclear cooperation for its national development;

(c) to Article 1, to which is added the new paragraph b.;

(d) to Article 2.b, to refer to States that have undertaken to accept safeguards on all of their nuclear activities; and,

(e) to Article 3a. and b., to add “Without prejudice to any other reporting requirement contained in the Safeguards Agreement.”.

7. With respect to Article 17 of the Model Additional Protocol, the first alternative has been chosen.

8. The Board of Governors will be aware that the Agency will not mechanistically or systematically seek to verify information obtained under Additional Protocols. The verification activities in question are not linked to quantitative yardsticks such as inventories of nuclear materials. Therefore, the Secretariat cannot provide precise estimates of those costs of implementing each Additional Protocol concluded. The volume of activities relevant in this regard will depend on case-by-case decisions taken within the authority conferred upon the Agency by the Additional Protocol and subject to the overall budgetary appropriations for safeguards implementation.
WHEREAS the Government of India (hereinafter referred to as "India") and the International Atomic Energy Agency (hereinafter referred to as the "Agency") are parties to an Agreement for the Application of Safeguards to Civilian Nuclear Facilities (hereinafter referred to as the "Safeguards Agreement"), which entered into force on …………………;

AWARE OF the desire of the international community to further enhance nuclear non-proliferation by strengthening the effectiveness and improving the efficiency of the Agency's safeguards system;

RECOGNIZING that India, in the exercise of its sovereign rights, is prepared to cooperate with the Agency in further development of peaceful uses of nuclear energy;

WHEREAS India, a State with advanced nuclear technology, wishes to expand civil nuclear cooperation for its national development;

RECALLING that the Agency must take into account in the implementation of safeguards the need to: avoid hampering the economic and technological development of India or international co-operation in the field of peaceful nuclear activities; respect health, safety, physical protection and other security provisions in force and the rights of individuals; and take every precaution to protect commercial, technological and industrial secrets as well as other confidential information coming to its knowledge;

WHEREAS the frequency and intensity of activities described in this Protocol shall be kept to the minimum consistent with the objective of strengthening the effectiveness and improving the efficiency of Agency safeguards;

NOW THEREFORE India and the Agency have agreed as follows:
RELATIONSHIP BETWEEN THE PROTOCOL AND THE SAFEGUARDS AGREEMENT

Article 1

a. The provisions of the Safeguards Agreement shall apply to this Protocol to the extent that they are relevant to and compatible with the provisions of this Protocol. In case of conflict between the provisions of the Safeguards Agreement and those of this Protocol, the provisions of this Protocol shall apply.

b. The Protocol shall be implemented in a manner designed to avoid hampering India’s economic or technological development and not to hinder or otherwise interfere with any activities involving the use by India of nuclear material, non-nuclear material, equipment, components, information or technology produced, acquired or developed by India outside the scope of the Safeguards Agreement for its own purposes.

PROVISION OF INFORMATION

Article 2

a. India shall provide the Agency with a declaration under this Protocol containing:

(i) The quantities, the chemical composition and the destination of each export out of India of source material which has not reached the composition and purity suitable for fuel fabrication or for being isotopically enriched, as follows:

(a) Ten metric tons of uranium, or for successive exports of uranium from India to the same State, each of less than ten metric tons, but exceeding a total of ten metric tons for the year;

(b) Twenty metric tons of thorium, or for successive exports of thorium from India to the same State, each of less than twenty metric tons, but exceeding a total of twenty metric tons for the year;

it being understood that there is no requirement to provide information on such material once it is in its non-nuclear end-use form.

(ii) The following information regarding specified equipment and non-nuclear material listed in the Annex hereto:

For each export out of India of such equipment and material: the identity, quantity, location of intended use in the receiving State and date or, as appropriate, expected date, of export.

b. Upon request by the Agency, India shall provide amplifications or clarifications of any information it has provided under this Article, in so far as relevant for the purpose of safeguards in a State that has accepted comprehensive safeguards.

Article 3

a. Without prejudice to any other reporting requirements contained in the Safeguards Agreement, India shall provide to the Agency, by 15 May of each year, the information
identified in Article 2.a.(i) for the period covering the previous calendar year.

b. Without prejudice to any other reporting requirements contained in the Safeguards Agreement, India shall provide to the Agency on a quarterly basis the information identified in Article 2.a.(ii). This information shall be provided within sixty days of the end of each quarter.

DESIGNATION OF AGENCY INSPECTORS

Article 4

a. (i) The Director General shall notify India of the Board's approval of any Agency official as a safeguards inspector. Unless India advises the Director General of its rejection of such an official as an inspector for India within three months of receipt of notification of the Board's approval, the inspector so notified to India shall be considered designated to India.

(ii) The Director General, acting in response to a request by India or on his own initiative, shall immediately inform India of the withdrawal of the designation of any official as an inspector for India.

b. A notification referred to in paragraph a. above shall be deemed to be received by India seven days after the date of the transmission by registered mail of the notification by the Agency to India.

VISAS

Article 5

India shall, within one month of the receipt of a request therefor, provide the designated inspector specified in the request with appropriate multiple entry/exit and/or transit visas, where required, to enable the inspector to enter and remain on the territory of India for the purpose of carrying out his/her functions. Any visas required shall be valid for at least one year and shall be renewed, as required, to cover the duration of the inspector's designation to India.

COMMUNICATIONS SYSTEMS

Article 6

a. India shall permit and protect free communications by the Agency for official purposes between Agency inspectors in India and Agency Headquarters and/or Regional Offices, including attended and unattended transmission of information generated by Agency containment and/or surveillance or measurement devices. The Agency shall have, in consultation with India, the right to make use of internationally established systems of
direct communications, including satellite systems and other forms of telecommunication, not in use in India. At the request of India or the Agency, details of the implementation of this paragraph with respect to the attended or unattended transmission of information generated by Agency containment and/or surveillance or measurement devices shall be specified in the Subsidiary Arrangements.

b. Communication and transmission of information as provided for in paragraph a. above shall take due account of the need to protect proprietary or commercially sensitive information or design information which India regards as being of particular sensitivity.

PROTECTION OF CONFIDENTIAL INFORMATION

Article 7

a. The Agency shall maintain a stringent regime to ensure effective protection against disclosure of commercial, technological and industrial secrets and other confidential information coming to its knowledge, including such information coming to the Agency's knowledge in the implementation of this Protocol.

b. The regime referred to in paragraph a. above shall include, among others, provisions relating to:

(i) General principles and associated measures for the handling of confidential information;

(ii) Conditions of staff employment relating to the protection of confidential information;

(iii) Procedures in cases of breaches or alleged breaches of confidentiality.

c. The regime referred to in paragraph a. above shall be approved and periodically reviewed by the Board.

ANNEX

Article 8

a. The Annex to this Protocol shall be an integral part thereof. Except for the purposes of amendment of the Annex, the term "Protocol" as used in this instrument means the Protocol and the Annex together.

b. The list of equipment and material specified in the Annex may be amended by the Board upon the advice of an open-ended working group of experts established by the Board. Any such amendment shall take effect four months after its adoption by the Board.
ENTRY INTO FORCE

Article 9

a. This Protocol shall enter into force on the date on which the Agency receives from India written notification that India’s statutory and/or constitutional requirements for entry into force have been met.

b. India may, at any date before this Protocol enters into force, declare that it will apply this Protocol provisionally.

c. The Director General shall promptly inform all Member States of the Agency of any declaration of provisional application of, and of the entry into force of, this Protocol.

DONE in Vienna on the ________________ day of ______________ 20__, in duplicate, in the English language.

For the GOVERNMENT OF INDIA: For the INTERNATIONAL ATOMIC ENERGY AGENCY:

ANNEX TO THE PROTOCOL ADDITIONAL TO THE AGREEMENT BETWEEN THE
GOVERNMENT OF INDIA AND THE INTERNATIONAL ATOMIC ENERGY AGENCY
FOR THE APPLICATION OF SAFEGUARDS TO CIVILIAN NUCLEAR FACILITIES

LIST OF SPECIFIED EQUIPMENT AND NON-NUCLEAR MATERIAL FOR THE
REPORTING OF EXPORTS ACCORDING TO ARTICLE 2.a.(ii)

1. Reactors and equipment therefor

1.1. Complete nuclear reactors

Nuclear reactors capable of operation so as to maintain a controlled self-sustaining fission chain reaction, excluding zero energy reactors, the latter being defined as reactors with a designed maximum rate of production of plutonium not exceeding 100 grams per year.

EXPLANATORY NOTE

A "nuclear reactor" basically includes the items within or attached directly to the reactor vessel, the equipment which controls the level of power in the core, and the components which normally contain or come in direct contact with or control the primary coolant of the reactor core.

It is not intended to exclude reactors which could reasonably be capable of modification to produce significantly more than 100 grams of plutonium per year. Reactors designed for sustained operation at significant power levels, regardless of their capacity for plutonium production, are not considered as "zero energy reactors".

1.2. Reactor pressure vessels

Metal vessels, as complete units or as major shop-fabricated parts therefor, which are especially designed or prepared to contain the core of a nuclear reactor as defined in paragraph 1.1. above and are capable of withstanding the operating pressure of the primary coolant.

EXPLANATORY NOTE

A top plate for a reactor pressure vessel is covered by item 1.2. as a major shop-fabricated part of a pressure vessel.

Reactor internals (e.g. support columns and plates for the core and other vessel internals, control rod guide tubes, thermal shields, baffles, core grid plates, diffuser plates, etc.) are normally supplied by the reactor supplier. In some cases, certain internal support components are included in the fabrication of the pressure vessel. These items are sufficiently critical to the safety and reliability of the operation of the reactor (and, therefore, to the guarantees and liability of the reactor supplier), so that their supply, outside the basic supply arrangement for the reactor itself, would not be common practice. Therefore, although the separate supply of these unique, especially designed and prepared, critical, large and expensive items would not necessarily be considered as falling outside the area of concern, such a mode of supply is considered unlikely.
1.3. Reactor fuel charging and discharging machines

Manipulative equipment especially designed or prepared for inserting or removing fuel in a nuclear reactor as defined in paragraph 1.1. above capable of on-load operation or employing technically sophisticated positioning or alignment features to allow complex off-load fueling operations such as those in which direct viewing of or access to the fuel is not normally available.

1.4. Reactor control rods

Rods especially designed or prepared for the control of the reaction rate in a nuclear reactor as defined in paragraph 1.1. above.

EXPLANATORY NOTE

This item includes, in addition to the neutron absorbing part, the support or suspension structures therefor if supplied separately.

1.5. Reactor pressure tubes

Tubes which are especially designed or prepared to contain fuel elements and the primary coolant in a reactor as defined in paragraph 1.1. above at an operating pressure in excess of 5.1 MPa (740 psi).

1.6. Zirconium tubes

Zirconium metal and alloys in the form of tubes or assemblies of tubes, and in quantities exceeding 500 kg in any period of 12 months, especially designed or prepared for use in a reactor as defined in paragraph 1.1. above, and in which the relation of hafnium to zirconium is less than 1:500 parts by weight.

1.7. Primary coolant pumps

Pumps especially designed or prepared for circulating the primary coolant for nuclear reactors as defined in paragraph 1.1. above.

EXPLANATORY NOTE

Especially designed or prepared pumps may include elaborate sealed or multi-sealed systems to prevent leakage of primary coolant, canned-driven pumps, and pumps with inertial mass systems. This definition encompasses pumps certified to NC-1 or equivalent standards.

2. Non-nuclear materials for reactors

2.1. Deuterium and heavy water

Deuterium, heavy water (deuterium oxide) and any other deuterium compound in which the ratio of deuterium to hydrogen atoms exceeds 1:5000 for use in a nuclear
reactor as defined in paragraph 1.1. above in quantities exceeding 200 kg of deuterium atoms for any one recipient country in any period of 12 months.

2.2. **Nuclear grade graphite**

Graphite having a purity level better than 5 parts per million boron equivalent and with a density greater than 1.50 g/cm3 for use in a nuclear reactor as defined in paragraph 1.1. above in quantities exceeding 3×10^4 kg (30 metric tons) for any one recipient country in any period of 12 months.

NOTE

For the purpose of reporting, the Government will determine whether or not the exports of graphite meeting the above specifications are for nuclear reactor use.

3. **Plants for the reprocessing of irradiated fuel elements, and equipment especially designed or prepared therefor**

INTRODUCTORY NOTE

Reprocessing irradiated nuclear fuel separates plutonium and uranium from intensely radioactive fission products and other transuranic elements. Different technical processes can accomplish this separation. However, over the years Purex has become the most commonly used and accepted process. Purex involves the dissolution of irradiated nuclear fuel in nitric acid, followed by separation of the uranium, plutonium, and fission products by solvent extraction using a mixture of tributyl phosphate in an organic diluent.

Purex facilities have process functions similar to each other, including: irradiated fuel element chopping, fuel dissolution, solvent extraction, and process liquor storage. There may also be equipment for thermal denitration of uranium nitrate, conversion of plutonium nitrate to oxide or metal, and treatment of fission product waste liquor to a form suitable for long term storage or disposal. However, the specific type and configuration of the equipment performing these functions may differ between Purex facilities for several reasons, including the type and quantity of irradiated nuclear fuel to be reprocessed and the intended disposition of the recovered materials, and the safety and maintenance philosophy incorporated into the design of the facility.

A "plant for the reprocessing of irradiated fuel elements" includes the equipment and components which normally come in direct contact with and directly control the irradiated fuel and the major nuclear material and fission product processing streams.

These processes, including the complete systems for plutonium conversion and plutonium metal production, may be identified by the measures taken to avoid criticality (e.g. by geometry), radiation exposure (e.g. by shielding), and toxicity hazards (e.g. by containment).

Items of equipment that are considered to fall within the meaning of the phrase "and equipment especially designed or prepared" for the reprocessing of irradiated fuel
elements include:

3.1. **Irradiated fuel element chopping machines**

INTRODUCTORY NOTE

This equipment breaches the cladding of the fuel to expose the irradiated nuclear material to dissolution. Especially designed metal cutting shears are the most commonly employed, although advanced equipment, such as lasers, may be used.

Remotely operated equipment especially designed or prepared for use in a reprocessing plant as identified above and intended to cut, chop or shear irradiated nuclear fuel assemblies, bundles or rods.

3.2. **Dissolvers**

INTRODUCTORY NOTE

Dissolvers normally receive the chopped-up spent fuel. In these critically safe vessels, the irradiated nuclear material is dissolved in nitric acid and the remaining hulls removed from the process stream.

Critically safe tanks (e.g. small diameter, annular or slab tanks) especially designed or prepared for use in a reprocessing plant as identified above, intended for dissolution of irradiated nuclear fuel and which are capable of withstand hot, highly corrosive liquid, and which can be remotely loaded and maintained.

3.3. **Solvent extractors and solvent extraction equipment**

INTRODUCTORY NOTE

Solvent extractors both receive the solution of irradiated fuel from the dissolvers and the organic solution which separates the uranium, plutonium, and fission products. Solvent extraction equipment is normally designed to meet strict operating parameters, such as long operating lifetimes with no maintenance requirements or adaptability to easy replacement, simplicity of operation and control, and flexibility for variations in process conditions.

Especially designed or prepared solvent extractors such as packed or pulse columns, mixer settlers or centrifugal contactors for use in a plant for the reprocessing of irradiated fuel. Solvent extractors must be resistant to the corrosive effect of nitric acid. Solvent extractors are normally fabricated to extremely high standards (including special welding and inspection and quality assurance and quality control techniques) out of low carbon stainless steels, titanium, zirconium, or other high quality materials.
3.4. Chemical holding or storage vessels

INTRODUCTORY NOTE

Three main process liquor streams result from the solvent extraction step. Holding or storage vessels are used in the further processing of all three streams, as follows:

(a) The pure uranium nitrate solution is concentrated by evaporation and passed to a denitration process where it is converted to uranium oxide. This oxide is reused in the nuclear fuel cycle.

(b) The intensely radioactive fission products solution is normally concentrated by evaporation and stored as a liquor concentrate. This concentrate may be subsequently evaporated and converted to a form suitable for storage or disposal.

(c) The pure plutonium nitrate solution is concentrated and stored pending its transfer to further process steps. In particular, holding or storage vessels for plutonium solutions are designed to avoid criticality problems resulting from changes in concentration and form of this stream.

Especially designed or prepared holding or storage vessels for use in a plant for the reprocessing of irradiated fuel. The holding or storage vessels must be resistant to the corrosive effect of nitric acid. The holding or storage vessels are normally fabricated of materials such as low carbon stainless steels, titanium or zirconium, or other high quality materials. Holding or storage vessels may be designed for remote operation and maintenance and may have the following features for control of nuclear criticality:

(1) walls or internal structures with a boron equivalent of at least two per cent, or

(2) a maximum diameter of 175 mm (7 in) for cylindrical vessels, or

(3) a maximum width of 75 mm (3 in) for either a slab or annular vessel.

3.5. Plutonium nitrate to oxide conversion system

INTRODUCTORY NOTE

In most reprocessing facilities, this final process involves the conversion of the plutonium nitrate solution to plutonium dioxide. The main functions involved in this process are: process feed storage and adjustment, precipitation and solid/liquor separation, calcination, product handling, ventilation, waste management, and process control.

Complete systems especially designed or prepared for the conversion of plutonium nitrate to plutonium oxide, in particular adapted so as to avoid criticality and radiation effects and to minimize toxicity hazards.
3.6. Plutonium oxide to metal production system

INTRODUCTORY NOTE

This process, which could be related to a reprocessing facility, involves the fluorination of plutonium dioxide, normally with highly corrosive hydrogen fluoride, to produce plutonium fluoride which is subsequently reduced using high purity calcium metal to produce metallic plutonium and a calcium fluoride slag. The main functions involved in this process are: fluorination (e.g. involving equipment fabricated or lined with a precious metal), metal reduction (e.g. employing ceramic crucibles), slag recovery, product handling, ventilation, waste management and process control.

Complete systems especially designed or prepared for the production of plutonium metal, in particular adapted so as to avoid criticality and radiation effects and to minimize toxicity hazards.

4. Plants for the fabrication of fuel elements

A "plant for the fabrication of fuel elements" includes the equipment:

(a) Which normally comes in direct contact with, or directly processes, or controls, the production flow of nuclear material, or

(b) Which seals the nuclear material within the cladding.

5. Plants for the separation of isotopes of uranium and equipment, other than analytical instruments, especially designed or prepared therefor

Items of equipment that are considered to fall within the meaning of the phrase "equipment, other than analytical instruments, especially designed or prepared" for the separation of isotopes of uranium include:

5.1. Gas centrifuges and assemblies and components especially designed or prepared for use in gas centrifuges

INTRODUCTORY NOTE

The gas centrifuge normally consists of a thin-walled cylinder(s) of between 75 mm (3 in) and 400 mm (16 in) diameter contained in a vacuum environment and spun at high peripheral speed of the order of 300 m/s or more with its central axis vertical. In order to achieve high speed the materials of construction for the rotating components have to be of a high strength to density ratio and the rotor assembly, and hence its individual components, have to be manufactured to very close tolerances in order to minimize the unbalance. In contrast to other centrifuges, the gas centrifuge for uranium enrichment is characterized by having within the rotor chamber a rotating disc-shaped baffle(s) and a stationary tube arrangement for feeding and extracting the UF$_6$ gas and featuring at least 3 separate channels, of which 2 are connected to
scoops extending from the rotor axis towards the periphery of the rotor chamber. Also contained within the vacuum environment are a number of critical items which do not rotate and which although they are especially designed are not difficult to fabricate nor are they fabricated out of unique materials. A centrifuge facility however requires a large number of these components, so that quantities can provide an important indication of end use.

5.1.1. Rotating components

(a) Complete rotor assemblies:

Thin-walled cylinders, or a number of interconnected thin-walled cylinders, manufactured from one or more of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section. If interconnected, the cylinders are joined together by flexible bellows or rings as described in section 5.1.1.(c) following. The rotor is fitted with an internal baffle(s) and end caps, as described in section 5.1.1.(d) and (e) following, if in final form. However the complete assembly may be delivered only partly assembled.

(b) Rotor tubes:

Especially designed or prepared thin-walled cylinders with thickness of 12 mm (0.5 in) or less, a diameter of between 75 mm (3 in) and 400 mm (16 in), and manufactured from one or more of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.

(c) Rings or Bellows:

Components especially designed or prepared to give localized support to the rotor tube or to join together a number of rotor tubes. The bellows is a short cylinder of wall thickness 3 mm (0.12 in) or less, a diameter of between 75 mm (3 in) and 400 mm (16 in), having a convolute, and manufactured from one of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.

(d) Baffles:

Disc-shaped components of between 75 mm (3 in) and 400 mm (16 in) diameter especially designed or prepared to be mounted inside the centrifuge rotor tube, in order to isolate the take-off chamber from the main separation chamber and, in some cases, to assist the UF₆ gas circulation within the main separation chamber of the rotor tube, and manufactured from one of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.

(e) Top caps/Bottom caps:

Disc-shaped components of between 75 mm (3 in) and 400 mm (16 in) diameter especially designed or prepared to fit to the ends of the rotor tube, and so contain the UF₆ within the rotor tube, and in some cases to support, retain or contain as an integrated part an element of the upper bearing (top cap) or to carry the rotating
elements of the motor and lower bearing (bottom cap), and manufactured from one of the high strength to density ratio materials described in the EXPLANATORY NOTE to this Section.

EXPLANATORY NOTE

The materials used for centrifuge rotating components are:

(a) Maraging steel capable of an ultimate tensile strength of $2.05 \times 10^9 \text{ N/m}^2$ (300,000 psi) or more;

(b) Aluminium alloys capable of an ultimate tensile strength of $0.46 \times 10^9 \text{ N/m}^2$ (67,000 psi) or more;

(c) Filamentary materials suitable for use in composite structures and having a specific modulus of $12.3 \times 10^6 \text{ m}$ or greater and a specific ultimate tensile strength of $0.3 \times 10^6 \text{ m}$ or greater ('Specific Modulus' is the Young's Modulus in N/m2 divided by the specific weight in N/m3; 'Specific Ultimate Tensile Strength' is the ultimate tensile strength in N/m2 divided by the specific weight in N/m3).

5.1.2. Static components

(a) Magnetic suspension bearings:

Especially designed or prepared bearing assemblies consisting of an annular magnet suspended within a housing containing a damping medium. The housing will be manufactured from a UF$_6$-resistant material (see EXPLANATORY NOTE to Section 5.2.). The magnet couples with a pole piece or a second magnet fitted to the top cap described in Section 5.1.1.(e). The magnet may be ring-shaped with a relation between outer and inner diameter smaller or equal to 1.6:1. The magnet may be in a form having an initial permeability of 0.15 H/m (120,000 in CGS units) or more, or a remanence of 98.5% or more, or an energy product of greater than 80 kJ/m3 (107 gauss-oersteds). In addition to the usual material properties, it is a prerequisite that the deviation of the magnetic axes from the geometrical axes is limited to very small tolerances (lower than 0.1 mm or 0.004 in) or that homogeneity of the material of the magnet is specially called for.

(b) Bearings/Dampers:

Especially designed or prepared bearings comprising a pivot/cup assembly mounted on a damper. The pivot is normally a hardened steel shaft with a hemisphere at one end with a means of attachment to the bottom cap described in section 5.1.1.(e) at the other. The shaft may however have a hydrodynamic bearing attached. The cup is pellet-shaped with a hemispherical indentation in one surface. These components are often supplied separately to the damper.

(c) Molecular pumps:

Especially designed or prepared cylinders having internally machined or extruded
helical grooves and internally machined bores. Typical dimensions are as follows: 75 mm (3 in) to 400 mm (16 in) internal diameter, 10 mm (0.4 in) or more wall thickness, with the length equal to or greater than the diameter. The grooves are typically rectangular in cross-section and 2 mm (0.08 in) or more in depth.

(d) Motor stators:

Especially designed or prepared ring-shaped stators for high speed multiphase AC hysteresis (or reluctance) motors for synchronous operation within a vacuum in the frequency range of 600 - 2000 Hz and a power range of 50 - 1000 VA. The stators consist of multi-phase windings on a laminated low loss iron core comprised of thin layers typically 2.0 mm (0.08 in) thick or less.

(e) Centrifuge housing/recipients:

Components especially designed or prepared to contain the rotor tube assembly of a gas centrifuge. The housing consists of a rigid cylinder of wall thickness up to 30 mm (1.2 in) with precision machined ends to locate the bearings and with one or more flanges for mounting. The machined ends are parallel to each other and perpendicular to the cylinder's longitudinal axis to within 0.05 degrees or less. The housing may also be a honeycomb type structure to accommodate several rotor tubes. The housings are made of or protected by materials resistant to corrosion by UF₆.

(f) Scoops:

Especially designed or prepared tubes of up to 12 mm (0.5 in) internal diameter for the extraction of UF₆ gas from within the rotor tube by a Pitot tube action (that is, with an aperture facing into the circumferential gas flow within the rotor tube, for example by bending the end of a radially disposed tube) and capable of being fixed to the central gas extraction system. The tubes are made of or protected by materials resistant to corrosion by UF₆.

5.2. Especially designed or prepared auxiliary systems, equipment and components for gas centrifuge enrichment plants

INTRODUCTORY NOTE

The auxiliary systems, equipment and components for a gas centrifuge enrichment plant are the systems of plant needed to feed UF₆ to the centrifuges, to link the individual centrifuges to each other to form cascades (or stages) to allow for progressively higher enrichments and to extract the 'product' and 'tails' UF₆ from the centrifuges, together with the equipment required to drive the centrifuges or to control the plant.

Normally UF₆ is evaporated from the solid using heated autoclaves and is distributed in gaseous form to the centrifuges by way of cascade header pipework. The 'product' and 'tails' UF₆ gaseous streams flowing from the centrifuges are also passed by way of cascade header pipework to cold traps (operating at about 203 K (-70 °C)) where they are condensed prior to onward transfer into suitable containers for transportation...
or storage. Because an enrichment plant consists of many thousands of centrifuges arranged in cascades there are many kilometers of cascade header pipework, incorporating thousands of welds with a substantial amount of repetition of layout. The equipment, components and piping systems are fabricated to very high vacuum and cleanliness standards.

5.2.1. Feed systems/product and tails withdrawal systems

Especially designed or prepared process systems including:

Feed autoclaves (or stations), used for passing UF\textsubscript{6} to the centrifuge cascades at up to 100 kPa (15 psi) and at a rate of 1 kg/h or more;

Desublimers (or cold traps) used to remove UF\textsubscript{6} from the cascades at up to 3 kPa (0.5 psi) pressure. The desublimers are capable of being chilled to 203 K (-70 °C) and heated to 343 K (70 °C);

'Product' and 'Tails' stations used for trapping UF\textsubscript{6} into containers.

This plant, equipment and pipework is wholly made of or lined with UF\textsubscript{6}-resistant materials (see EXPLANATORY NOTE to this section) and is fabricated to very high vacuum and cleanliness standards.

5.2.2. Machine header piping systems

Especially designed or prepared piping systems and header systems for handling UF\textsubscript{6} within the centrifuge cascades. The piping network is normally of the 'triple' header system with each centrifuge connected to each of the headers. There is thus a substantial amount of repetition in its form. It is wholly made of UF\textsubscript{6}-resistant materials (see EXPLANATORY NOTE to this section) and is fabricated to very high vacuum and cleanliness standards.

5.2.3. UF\textsubscript{6} mass spectrometers/ion sources

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking 'on-line' samples of feed, product or tails, from UF\textsubscript{6} gas streams and having all of the following characteristics:

1. Unit resolution for atomic mass unit greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Having a collector system suitable for isotopic analysis.

5.2.4. Frequency changers

Frequency changers (also known as converters or invertors) especially designed or prepared to supply motor stators as defined under 5.1.2.(d), or parts, components and
sub-assemblies of such frequency changers having all of the following characteristics:

1. A multiphase output of 600 to 2000 Hz;
2. High stability (with frequency control better than 0.1%);
3. Low harmonic distortion (less than 2%); and
4. An efficiency of greater than 80%.

EXPLANATORY NOTE

The items listed above either come into direct contact with the UF$_6$ process gas or directly control the centrifuges and the passage of the gas from centrifuge to centrifuge and cascade to cascade.

Materials resistant to corrosion by UF$_6$ include stainless steel, aluminium, aluminium alloys, nickel or alloys containing 60% or more nickel.

5.3. Especially designed or prepared assemblies and components for use in gaseous diffusion enrichment

INTRODUCTORY NOTE

In the gaseous diffusion method of uranium isotope separation, the main technological assembly is a special porous gaseous diffusion barrier, heat exchanger for cooling the gas (which is heated by the process of compression), seal valves and control valves, and pipelines. Inasmuch as gaseous diffusion technology uses uranium hexafluoride (UF$_6$), all equipment, pipeline and instrumentation surfaces (that come in contact with the gas) must be made of materials that remain stable in contact with UF$_6$. A gaseous diffusion facility requires a number of these assemblies, so that quantities can provide an important indication of end use.

5.3.1. Gaseous diffusion barriers

(a) Especially designed or prepared thin, porous filters, with a pore size of 100 - 1,000 Å (angstroms), a thickness of 5 mm (0.2 in) or less, and for tubular forms, a diameter of 25 mm (1 in) or less, made of metallic, polymer or ceramic materials resistant to corrosion by UF$_6$, and

(b) especially prepared compounds or powders for the manufacture of such filters. Such compounds and powders include nickel or alloys containing 60 per cent or more nickel, aluminium oxide, or UF$_6$-resistant fully fluorinated hydrocarbon polymers having a purity of 99.9 per cent or more, a particle size less than 10 microns, and a high degree of particle size uniformity, which are especially prepared for the manufacture of gaseous diffusion barriers.
5.3.2. **Diffuser housings**

Especially designed or prepared hermetically sealed cylindrical vessels greater than 300 mm (12 in) in diameter and greater than 900 mm (35 in) in length, or rectangular vessels of comparable dimensions, which have an inlet connection and two outlet connections all of which are greater than 50 mm (2 in) in diameter, for containing the gaseous diffusion barrier, made of or lined with UF$_6$-resistant materials and designed for horizontal or vertical installation.

5.3.3. **Compressors and gas blowers**

Especially designed or prepared axial, centrifugal, or positive displacement compressors, or gas blowers with a suction volume capacity of 1 m3/min or more of UF$_6$, and with a discharge pressure of up to several hundred kPa (100 psi), designed for long-term operation in the UF$_6$ environment with or without an electrical motor of appropriate power, as well as separate assemblies of such compressors and gas blowers. These compressors and gas blowers have a pressure ratio between 2:1 and 6:1 and are made of, or lined with, materials resistant to UF$_6$.

5.3.4. **Rotary shaft seals**

Especially designed or prepared vacuum seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor or the gas blower rotor with the driver motor so as to ensure a reliable seal against in-leaking of air into the inner chamber of the compressor or gas blower which is filled with UF$_6$. Such seals are normally designed for a buffer gas in-leakage rate of less than 1000 cm3/min (60 in3/min).

5.3.5. **Heat exchangers for cooling UF$_6$**

Especially designed or prepared heat exchangers made of or lined with UF$_6$-resistant materials (except stainless steel) or with copper or any combination of those metals, and intended for a leakage pressure change rate of less than 10 Pa (0.0015 psi) per hour under a pressure difference of 100 kPa (15 psi).

5.4. **Especially designed or prepared auxiliary systems, equipment and components for use in gaseous diffusion enrichment**

INTRODUCTORY NOTE

The auxiliary systems, equipment and components for gaseous diffusion enrichment plants are the systems of plant needed to feed UF$_6$ to the gaseous diffusion assembly, to link the individual assemblies to each other to form cascades (or stages) to allow for progressively higher enrichments and to extract the 'product' and 'tails' UF$_6$ from the diffusion cascades. Because of the high inertial properties of diffusion cascades, any interruption in their operation, and especially their shut-down, leads to serious consequences. Therefore, a strict and constant maintenance of vacuum in all technological systems, automatic protection from accidents, and precise automated regulation of the gas flow is of importance in a gaseous diffusion plant. All this leads
to a need to equip the plant with a large number of special measuring, regulating and controlling systems.

Normally UF₆ is evaporated from cylinders placed within autoclaves and is distributed in gaseous form to the entry point by way of cascade header pipework. The 'product' and 'tails' UF₆ gaseous streams flowing from exit points are passed by way of cascade header pipework to either cold traps or to compression stations where the UF₆ gas is liquefied prior to onward transfer into suitable containers for transportation or storage. Because a gaseous diffusion enrichment plant consists of a large number of gaseous diffusion assemblies arranged in cascades, there are many kilometers of cascade header pipework, incorporating thousands of welds with substantial amounts of repetition of layout. The equipment, components and piping systems are fabricated to very high vacuum and cleanliness standards.

5.4.1. Feed systems/product and tails withdrawal systems

Especially designed or prepared process systems, capable of operating at pressures of 300 kPa (45 psi) or less, including:

Feed autoclaves (or systems), used for passing UF₆ to the gaseous diffusion cascades;

Desublimers (or cold traps) used to remove UF₆ from diffusion cascades;

Liquefaction stations where UF₆ gas from the cascade is compressed and cooled to form liquid UF₆;

'Product' or 'tails' stations used for transferring UF₆ into containers.

5.4.2. Header piping systems

Especially designed or prepared piping systems and header systems for handling UF₆ within the gaseous diffusion cascades. This piping network is normally of the "double" header system with each cell connected to each of the headers.

5.4.3. Vacuum systems

(a) Especially designed or prepared large vacuum manifolds, vacuum headers and vacuum pumps having a suction capacity of 5 m³/min (175 ft³/min) or more.

(b) Vacuum pumps especially designed for service in UF₆-bearing atmospheres made of, or lined with, aluminium, nickel, or alloys bearing more than 60% nickel. These pumps may be either rotary or positive, may have displacement and fluorocarbon seals, and may have special working fluids present.

5.4.4. Special shut-off and control valves

Especially designed or prepared manual or automated shut-off and control bellows valves made of UF₆-resistant materials with a diameter of 40 to 1500 mm (1.5 to 59 in) for installation in main and auxiliary systems of gaseous diffusion enrichment
5.4.5. **UF₆ mass spectrometers/ion sources**

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking "on-line" samples of feed, product or tails, from UF₆ gas streams and having all of the following characteristics:

1. Unit resolution for atomic mass unit greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Collector system suitable for isotopic analysis.

EXPLANATORY NOTE

The items listed above either come into direct contact with the UF₆ process gas or directly control the flow within the cascade. All surfaces which come into contact with the process gas are wholly made of, or lined with, UF₆-resistant materials. For the purposes of the sections relating to gaseous diffusion items the materials resistant to corrosion by UF₆ include stainless steel, aluminium, aluminium alloys, aluminium oxide, nickel or alloys containing 60% or more nickel and UF₆-resistant fully fluorinated hydrocarbon polymers.

5.5. **Especially designed or prepared systems, equipment and components for use in aerodynamic enrichment plants**

INTRODUCTORY NOTE

In aerodynamic enrichment processes, a mixture of gaseous UF₆ and light gas (hydrogen or helium) is compressed and then passed through separating elements wherein isotopic separation is accomplished by the generation of high centrifugal forces over a curved-wall geometry. Two processes of this type have been successfully developed: the separation nozzle process and the vortex tube process. For both processes the main components of a separation stage include cylindrical vessels housing the special separation elements (nozzles or vortex tubes), gas compressors and heat exchangers to remove the heat of compression. An aerodynamic plant requires a number of these stages, so that quantities can provide an important indication of end use. Since aerodynamic processes use UF₆, all equipment, pipeline and instrumentation surfaces (that come in contact with the gas) must be made of materials that remain stable in contact with UF₆.

EXPLANATORY NOTE

The items listed in this section either come into direct contact with the UF₆ process gas or directly control the flow within the cascade. All surfaces which come into contact with the process gas are wholly made of or protected by UF₆-resistant materials. For the purposes of the section relating to aerodynamic enrichment items,
the materials resistant to corrosion by UF₆ include copper, stainless steel, aluminium, aluminium alloys, nickel or alloys containing 60% or more nickel and UF₆-resistant fully fluorinated hydrocarbon polymers.

5.5.1. Separation nozzles

Especially designed or prepared separation nozzles and assemblies thereof. The separation nozzles consist of slit-shaped, curved channels having a radius of curvature less than 1 mm (typically 0.1 to 0.05 mm), resistant to corrosion by UF₆ and having a knife-edge within the nozzle that separates the gas flowing through the nozzle into two fractions.

5.5.2. Vortex tubes

Especially designed or prepared vortex tubes and assemblies thereof. The vortex tubes are cylindrical or tapered, made of or protected by materials resistant to corrosion by UF₆, having a diameter of between 0.5 cm and 4 cm, a length to diameter ratio of 20:1 or less and with one or more tangential inlets. The tubes may be equipped with nozzle-type appendages at either or both ends.

EXPLANATORY NOTE

The feed gas enters the vortex tube tangentially at one end or through swirl vanes or at numerous tangential positions along the periphery of the tube.

5.5.3. Compressors and gas blowers

Especially designed or prepared axial, centrifugal or positive displacement compressors or gas blowers made of or protected by materials resistant to corrosion by UF₆ and with a suction volume capacity of 2 m³/min or more of UF₆/carrier gas (hydrogen or helium) mixture.

EXPLANATORY NOTE

These compressors and gas blowers typically have a pressure ratio between 1.2:1 and 6:1.

5.5.4. Rotary shaft seals

Especially designed or prepared rotary shaft seals, with seal feed and seal exhaust connections, for sealing the shaft connecting the compressor rotor or the gas blower rotor with the driver motor so as to ensure a reliable seal against out-leakage of process gas or in-leakage of air or seal gas into the inner chamber of the compressor or gas blower which is filled with a UF₆/carrier gas mixture.

5.5.5. Heat exchangers for gas cooling

Especially designed or prepared heat exchangers made of or protected by materials resistant to corrosion by UF₆.
5.5.6. **Separation element housings**

Especially designed or prepared separation element housings, made of or protected by materials resistant to corrosion by UF$_6$, for containing vortex tubes or separation nozzles.

EXPLANATORY NOTE

These housings may be cylindrical vessels greater than 300 mm in diameter and greater than 900 mm in length, or may be rectangular vessels of comparable dimensions, and may be designed for horizontal or vertical installation.

5.5.7. **Feed systems/product and tails withdrawal systems**

Especially designed or prepared process systems or equipment for enrichment plants made of or protected by materials resistant to corrosion by UF$_6$, including:

(a) Feed autoclaves, ovens, or systems used for passing UF$_6$ to the enrichment process;

(b) Desublimers (or cold traps) used to remove UF$_6$ from the enrichment process for subsequent transfer upon heating;

(c) Solidification or liquefaction stations used to remove UF$_6$ from the enrichment process by compressing and converting UF$_6$ to a liquid or solid form;

(d) 'Product' or 'tails' stations used for transferring UF$_6$ into containers.

5.5.8. **Header piping systems**

Especially designed or prepared header piping systems, made of or protected by materials resistant to corrosion by UF$_6$, for handling UF$_6$ within the aerodynamic cascades. This piping network is normally of the 'double' header design with each stage or group of stages connected to each of the headers.

5.5.9. **Vacuum systems and pumps**

(a) Especially designed or prepared vacuum systems having a suction capacity of 5 m3/min or more, consisting of vacuum manifolds, vacuum headers and vacuum pumps, and designed for service in UF$_6$-bearing atmospheres,

(b) Vacuum pumps especially designed or prepared for service in UF$_6$-bearing atmospheres and made of or protected by materials resistant to corrosion by UF$_6$. These pumps may use fluorocarbon seals and special working fluids.

5.5.10. **Special shut-off and control valves**

Especially designed or prepared manual or automated shut-off and control bellows valves made of or protected by materials resistant to corrosion by UF$_6$ with a diameter of 40 to 1500 mm for installation in main and auxiliary systems of
aerodynamic enrichment plants.

5.5.11. UF₆ mass spectrometers/ion sources

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking 'on-line' samples of feed, 'product' or 'tails', from UF₆ gas streams and having all of the following characteristics:

1. Unit resolution for mass greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Collector system suitable for isotopic analysis.

5.5.12. UF₆/cARRIER GAS separation systems

Especially designed or prepared process systems for separating UF₆ from carrier gas (hydrogen or helium).

EXPLANATORY NOTE

These systems are designed to reduce the UF₆ content in the carrier gas to 1 ppm or less and may incorporate equipment such as:

(a) Cryogenic heat exchangers and cryoseparators capable of temperatures of -120 °C or less, or

(b) Cryogenic refrigeration units capable of temperatures of -120°C or less, or

(c) Separation nozzle or vortex tube units for the separation of UF₆ from carrier gas, or

(d) UF₆ cold traps capable of temperatures of -20°C or less.

5.6. Especially designed or prepared systems, equipment and components for use in chemical exchange or ion exchange enrichment plants

INTRODUCTORY NOTE

The slight difference in mass between the isotopes of uranium causes small changes in chemical reaction equilibria that can be used as a basis for separation of the isotopes. Two processes have been successfully developed: liquid-liquid chemical exchange and solid-liquid ion exchange.

In the liquid-liquid chemical exchange process, immiscible liquid phases (aqueous and organic) are countercurrently contacted to give the cascading effect of thousands of separation stages. The aqueous phase consists of uranium chloride in hydrochloric acid solution; the organic phase consists of an extractant containing uranium chloride.
in an organic solvent. The contactors employed in the separation cascade can be liquid-liquid exchange columns (such as pulsed columns with sieve plates) or liquid centrifugal contactors. Chemical conversions (oxidation and reduction) are required at both ends of the separation cascade in order to provide for the reflux requirements at each end. A major design concern is to avoid contamination of the process streams with certain metal ions. Plastic, plastic-lined (including use of fluorocarbon polymers) and/or glass-lined columns and piping are therefore used.

In the solid-liquid ion-exchange process, enrichment is accomplished by uranium adsorption/desorption on a special, very fast-acting, ion-exchange resin or adsorbent. A solution of uranium in hydrochloric acid and other chemical agents is passed through cylindrical enrichment columns containing packed beds of the adsorbent. For a continuous process, a reflux system is necessary to release the uranium from the adsorbent back into the liquid flow so that 'product' and 'tails' can be collected. This is accomplished with the use of suitable reduction/oxidation chemical agents that are fully regenerated in separate external circuits and that may be partially regenerated within the isotopic separation columns themselves. The presence of hot concentrated hydrochloric acid solutions in the process requires that the equipment be made of or protected by special corrosion-resistant materials.

5.6.1. Liquid-liquid exchange columns (Chemical exchange)

Countercurrent liquid-liquid exchange columns having mechanical power input (i.e., pulsed columns with sieve plates, reciprocating plate columns, and columns with internal turbine mixers), especially designed or prepared for uranium enrichment using the chemical exchange process. For corrosion resistance to concentrated hydrochloric acid solutions, these columns and their internals are made of or protected by suitable plastic materials (such as fluorocarbon polymers) or glass. The stage residence time of the columns is designed to be short (30 seconds or less).

5.6.2. Liquid-liquid centrifugal contactors (Chemical exchange)

Liquid-liquid centrifugal contactors especially designed or prepared for uranium enrichment using the chemical exchange process. Such contactors use rotation to achieve dispersion of the organic and aqueous streams and then centrifugal force to separate the phases. For corrosion resistance to concentrated hydrochloric acid solutions, the contactors are made of or are lined with suitable plastic materials (such as fluorocarbon polymers) or are lined with glass. The stage residence time of the centrifugal contactors is designed to be short (30 seconds or less).

5.6.3. Uranium reduction systems and equipment (Chemical exchange)

(a) Especially designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions.
EXPLANATORY NOTE

The cell cathodic compartment must be designed to prevent re-oxidation of uranium to its higher valence state. To keep the uranium in the cathodic compartment, the cell may have an impervious diaphragm membrane constructed of special cation exchange material. The cathode consists of a suitable solid conductor such as graphite.

(b) Especially designed or prepared systems at the product end of the cascade for taking the U\(^{4+}\) out of the organic stream, adjusting the acid concentration and feeding to the electrochemical reduction cells.

EXPLANATORY NOTE

These systems consist of solvent extraction equipment for stripping the U\(^{4+}\) from the organic stream into an aqueous solution, evaporation and/or other equipment to accomplish solution pH adjustment and control, and pumps or other transfer devices for feeding to the electrochemical reduction cells. A major design concern is to avoid contamination of the aqueous stream with certain metal ions. Consequently, for those parts in contact with the process stream, the system is constructed of equipment made of or protected by suitable materials (such as glass, fluorocarbon polymers, polyphenyl sulfate, polyether sulfone, and resin-impregnated graphite).

5.6.4. Feed preparation systems (Chemical exchange)

Especially designed or prepared systems for producing high-purity uranium chloride feed solutions for chemical exchange uranium isotope separation plants.

EXPLANATORY NOTE

These systems consist of dissolution, solvent extraction and/or ion exchange equipment for purification and electrolytic cells for reducing the uranium U\(^{6+}\) or U\(^{4+}\) to U\(^{3+}\). These systems produce uranium chloride solutions having only a few parts per million of metallic impurities such as chromium, iron, vanadium, molybdenum and other bivalent or higher multi-valent cations. Materials of construction for portions of the system processing high-purity U\(^{3+}\) include glass, fluorocarbon polymers, polyphenyl sulfate or polyether sulfone plastic-lined and resin-impregnated graphite.

5.6.5. Uranium oxidation systems (Chemical exchange)

Especially designed or prepared systems for oxidation of U\(^{3+}\) to U\(^{4+}\) for return to the uranium isotope separation cascade in the chemical exchange enrichment process.

EXPLANATORY NOTE

These systems may incorporate equipment such as:

(a) Equipment for contacting chlorine and oxygen with the aqueous effluent from the isotope separation equipment and extracting the resultant U\(^{4+}\) into the
stripped organic stream returning from the product end of the cascade,

(b) Equipment that separates water from hydrochloric acid so that the water and the concentrated hydrochloric acid may be reintroduced to the process at the proper locations.

5.6.6. Fast-reacting ion exchange resins/adsorbents (ion exchange)

Fast-reacting ion-exchange resins or adsorbents especially designed or prepared for uranium enrichment using the ion exchange process, including porous macroporous resins, and/or pellicular structures in which the active chemical exchange groups are limited to a coating on the surface of an inactive porous support structure, and other composite structures in any suitable form including particles or fibers. These ion exchange resins/adsorbents have diameters of 0.2 mm or less and must be chemically resistant to concentrated hydrochloric acid solutions as well as physically strong enough so as not to degrade in the exchange columns. The resins/adsorbents are especially designed to achieve very fast uranium isotope exchange kinetics (exchange rate half-time of less than 10 seconds) and are capable of operating at a temperature in the range of 100°C to 200°C.

5.6.7. Ion exchange columns (Ion exchange)

Cylindrical columns greater than 1000 mm in diameter for containing and supporting packed beds of ion exchange resin/adsorbent, especially designed or prepared for uranium enrichment using the ion exchange process. These columns are made of or protected by materials (such as titanium or fluorocarbon plastics) resistant to corrosion by concentrated hydrochloric acid solutions and are capable of operating at a temperature in the range of 100°C to 200°C and pressures above 0.7 MPa (102 psia).

5.6.8. Ion exchange reflux systems (Ion exchange)

(a) Especially designed or prepared chemical or electrochemical reduction systems for regeneration of the chemical reducing agent(s) used in ion exchange uranium enrichment cascades.

(b) Especially designed or prepared chemical or electrochemical oxidation systems for regeneration of the chemical oxidizing agent(s) used in ion exchange uranium enrichment cascades.

EXPLANATORY NOTE

The ion exchange enrichment process may use, for example, trivalent titanium (Ti\(^{3+}\)) as a reducing cation in which case the reduction system would regenerate Ti\(^{3+}\) by reducing Ti\(^{4+}\).

The process may use, for example, trivalent iron (Fe\(^{3+}\)) as an oxidant in which case the oxidation system would regenerate Fe\(^{3+}\) by oxidizing Fe\(^{2+}\).
5.7. Especially designed or prepared systems, equipment and components for use in laser-based enrichment plants

INTRODUCTORY NOTE

Present systems for enrichment processes using lasers fall into two categories: those in which the process medium is atomic uranium vapor and those in which the process medium is the vapor of a uranium compound. Common nomenclature for such processes include: first category - atomic vapor laser isotope separation (AVLIS or SILVA); second category - molecular laser isotope separation (MLIS or MOLIS) and chemical reaction by isotope selective laser activation (CRISLA). The systems, equipment and components for laser enrichment plants embrace: (a) devices to feed uranium-metal vapor (for selective photo-ionization) or devices to feed the vapor of a uranium compound (for photo-dissociation or chemical activation); (b) devices to collect enriched and depleted uranium metal as 'product' and 'tails' in the first category, and devices to collect dissociated or reacted compounds as 'product' and unaffected material as 'tails' in the second category; (c) process laser systems to selectively excite the uranium-235 species; and (d) feed preparation and product conversion equipment. The complexity of the spectroscopy of uranium atoms and compounds may require incorporation of any of a number of available laser technologies.

EXPLANATORY NOTE

Many of the items listed in this section come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF$_6$ or a mixture of UF$_6$ and other gases. All surfaces that come into contact with the uranium or UF$_6$ are wholly made of or protected by corrosion-resistant materials. For the purposes of the section relating to laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium metal or uranium alloys include yttria-coated graphite and tantalum; and the materials resistant to corrosion by UF$_6$ include copper, stainless steel, aluminium, aluminium alloys, nickel or alloys containing 60% or more nickel and UF$_6$-resistant fully fluorinated hydrocarbon polymers.

5.7.1. Uranium vaporization systems (AVLIS)

Especially designed or prepared uranium vaporization systems which contain high-power strip or scanning electron beam guns with a delivered power on the target of more than 2.5 kW/cm.

5.7.2. Liquid uranium metal handling systems (AVLIS)

Especially designed or prepared liquid metal handling systems for molten uranium or uranium alloys, consisting of crucibles and cooling equipment for the crucibles.

EXPLANATORY NOTE

The crucibles and other parts of this system that come into contact with molten uranium or uranium alloys are made of or protected by materials of suitable corrosion
and heat resistance. Suitable materials include tantalum, yttria-coated graphite, graphite coated with other rare earth oxides or mixtures thereof.

5.7.3. **Uranium metal 'product' and 'tails' collector assemblies (AVLIS)**

Especially designed or prepared 'product' and 'tails' collector assemblies for uranium metal in liquid or solid form.

EXPLANATORY NOTE

Components for these assemblies are made of or protected by materials resistant to the heat and corrosion of uranium metal vapor or liquid (such as yttria-coated graphite or tantalum) and may include pipes, valves, fittings, 'gutters', feed-throughs, heat exchangers and collector plates for magnetic, electrostatic or other separation methods.

5.7.4. **Separator module housings (AVLIS)**

Especially designed or prepared cylindrical or rectangular vessels for containing the uranium metal vapor source, the electron beam gun, and the 'product' and 'tails' collectors.

EXPLANATORY NOTE

These housings have multiplicity of ports for electrical and water feed-throughs, laser beam windows, vacuum pump connections and instrumentation diagnostics and monitoring. They have provisions for opening and closure to allow refurbishment of internal components.

5.7.5. **Supersonic expansion nozzles (MLIS)**

Especially designed or prepared supersonic expansion nozzles for cooling mixtures of UF₆ and carrier gas to 150 K or less and which are corrosion resistant to UF₆.

5.7.6. **Uranium pentafluoride product collectors (MLIS)**

Especially designed or prepared uranium pentafluoride (UF₅) solid product collectors consisting of filter, impact, or cyclone-type collectors, or combinations thereof, and which are corrosion resistant to the UF₅/UF₆ environment.

5.7.7. **UF₆/carrier gas compressors (MLIS)**

Especially designed or prepared compressors for UF₆/carrier gas mixtures, designed for long term operation in a UF₆ environment. The components of these compressors that come into contact with process gas are made of or protected by materials resistant to corrosion by UF₆.

5.7.8. **Rotary shaft seals (MLIS)**

Especially designed or prepared rotary shaft seals, with seal feed and seal exhaust
connections, for sealing the shaft connecting the compressor rotor with the driver motor so as to ensure a reliable seal against out-leakage of process gas or in-leakage of air or seal gas into the inner chamber of the compressor which is filled with a UF$_6$/carrier gas mixture.

5.7.9. Fluorination systems (MLIS)

Especially designed or prepared systems for fluorinating UF$_5$ (solid) to UF$_6$ (gas).

EXPLANATORY NOTE

These systems are designed to fluorinate the collected UF$_5$ powder to UF$_6$ for subsequent collection in product containers or for transfer as feed to MLIS units for additional enrichment. In one approach, the fluorination reaction may be accomplished within the isotope separation system to react and recover directly off the 'product' collectors. In another approach, the UF$_5$ powder may be removed/ transferred from the 'product' collectors into a suitable reaction vessel (e.g., fluidized-bed reactor, screw reactor or flame tower) for fluorination. In both approaches, equipment for storage and transfer of fluorine (or other suitable fluorinating agents) and for collection and transfer of UF$_6$ are used.

5.7.10. UF$_6$ mass spectrometers/ion sources (MLIS)

Especially designed or prepared magnetic or quadrupole mass spectrometers capable of taking 'on-line' samples of feed, 'product' or 'tails', from UF$_6$ gas streams and having all of the following characteristics:

1. Unit resolution for mass greater than 320;
2. Ion sources constructed of or lined with nichrome or monel or nickel plated;
3. Electron bombardment ionization sources;
4. Collector system suitable for isotopic analysis.

5.7.11. Feed systems/product and tails withdrawal systems (MLIS)

Especially designed or prepared process systems or equipment for enrichment plants made of or protected by materials resistant to corrosion by UF$_6$, including:

(a) Feed autoclaves, ovens, or systems used for passing UF$_6$ to the enrichment process
(b) Desublimers (or cold traps) used to remove UF$_6$ from the enrichment process for subsequent transfer upon heating;
(c) Solidification or liquefaction stations used to remove UF$_6$ from the enrichment process by compressing and converting UF$_6$ to a liquid or solid form;
(d) 'Product' or 'tails' stations used for transferring UF$_6$ into containers.
5.7.12. **UF₆/carrier gas separation systems (MLIS)***

Especially designed or prepared process systems for separating UF₆ from carrier gas. The carrier gas may be nitrogen, argon, or other gas.

EXPLANATORY NOTE

These systems may incorporate equipment such as:

(a) Cryogenic heat exchangers or cryoseparators capable of temperatures of -120°C or less, or

(b) Cryogenic refrigeration units capable of temperatures of -120°C or less, or

(c) UF₆ cold traps capable of temperatures of -20°C or less.

5.7.13. **Laser systems (AVLIS, MLIS and CRISLA)***

Lasers or laser systems especially designed or prepared for the separation of uranium isotopes.

EXPLANATORY NOTE

The laser system for the AVLIS process usually consists of two lasers: a copper vapor laser and a dye laser. The laser system for MLIS usually consists of a CO₂ or excimer laser and a multi-pass optical cell with revolving mirrors at both ends. Lasers or laser systems for both processes require a spectrum frequency stabilizer for operation over extended periods of time.

5.8. **Especially designed or prepared systems, equipment and components for use in plasma separation enrichment plants**

INTRODUCTORY NOTE

In the plasma separation process, a plasma of uranium ions passes through an electric field tuned to the U-235 ion resonance frequency so that they preferentially absorb energy and increase the diameter of their corkscrew-like orbits. Ions with a large-diameter path are trapped to produce a product enriched in U-235. The plasma, which is made by ionizing uranium vapor, is contained in a vacuum chamber with a high-strength magnetic field produced by a superconducting magnet. The main technological systems of the process include the uranium plasma generation system, the separator module with superconducting magnet and metal removal systems for the collection of 'product' and 'tails'.

5.8.1. **Microwave power sources and antennae***

Especially designed or prepared microwave power sources and antennae for producing or accelerating ions and having the following characteristics: greater than 30 GHz frequency and greater than 50 kW mean power output for ion production.
5.8.2. **Ion excitation coils**

Especially designed or prepared radio frequency ion excitation coils for frequencies of more than 100 kHz and capable of handling more than 40 kW mean power.

5.8.3. **Uranium plasma generation systems**

Especially designed or prepared systems for the generation of uranium plasma, which may contain high-power strip or scanning electron beam guns with a delivered power on the target of more than 2.5 kW/cm.

5.8.4. **Liquid uranium metal handling systems**

Especially designed or prepared liquid metal handling systems for molten uranium or uranium alloys, consisting of crucibles and cooling equipment for the crucibles.

EXPLANATORY NOTE

The crucibles and other parts of this system that come into contact with molten uranium or uranium alloys are made of or protected by materials of suitable corrosion and heat resistance. Suitable materials include tantalum, yttria-coated graphite, graphite coated with other rare earth oxides or mixtures thereof.

5.8.5. **Uranium metal 'product' and 'tails' collector assemblies**

Especially designed or prepared 'product' and 'tails' collector assemblies for uranium metal in solid form. These collector assemblies are made of or protected by materials resistant to the heat and corrosion of uranium metal vapor, such as yttria-coated graphite or tantalum.

5.8.6. **Separator module housings**

Cylindrical vessels especially designed or prepared for use in plasma separation enrichment plants for containing the uranium plasma source, radio-frequency drive coil and the 'product' and 'tails' collectors.

EXPLANATORY NOTE

These housings have a multiplicity of ports for electrical feed-throughs, diffusion pump connections and instrumentation diagnostics and monitoring. They have provisions for opening and closure to allow for refurbishment of internal components and are constructed of a suitable non-magnetic material such as stainless steel.

5.9. **Especially designed or prepared systems, equipment and components for use in electromagnetic enrichment plants**

INTRODUCTORY NOTE

In the electromagnetic process, uranium metal ions produced by ionization of a salt feed material (typically UCl₄) are accelerated and passed through a magnetic field
that has the effect of causing the ions of different isotopes to follow different paths. The major components of an electromagnetic isotope separator include: a magnetic field for ion-beam diversion/separation of the isotopes, an ion source with its acceleration system, and a collection system for the separated ions. Auxiliary systems for the process include the magnet power supply system, the ion source high-voltage power supply system, the vacuum system, and extensive chemical handling systems for recovery of product and cleaning/recycling of components.

5.9.1. Electromagnetic isotope separators

Electromagnetic isotope separators especially designed or prepared for the separation of uranium isotopes, and equipment and components therefor, including:

(a) Ion sources

Especially designed or prepared single or multiple uranium ion sources consisting of a vapor source, ionizer, and beam accelerator, constructed of suitable materials such as graphite, stainless steel, or copper, and capable of providing a total ion beam current of 50 mA or greater.

(b) Ion collectors

Collector plates consisting of two or more slits and pockets especially designed or prepared for collection of enriched and depleted uranium ion beams and constructed of suitable materials such as graphite or stainless steel.

(c) Vacuum housings

Especially designed or prepared vacuum housings for uranium electromagnetic separators, constructed of suitable non-magnetic materials such as stainless steel and designed for operation at pressures of 0.1 Pa or lower.

EXPLANATORY NOTE

The housings are specially designed to contain the ion sources, collector plates and water-cooled liners and have provision for diffusion pump connections and opening and closure for removal and reinstallation of these components.

(d) Magnet pole pieces

Especially designed or prepared magnet pole pieces having a diameter greater than 2 m used to maintain a constant magnetic field within an electromagnetic isotope separator and to transfer the magnetic field between adjoining separators.

5.9.2. High voltage power supplies

Especially designed or prepared high-voltage power supplies for ion sources, having all of the following characteristics: capable of continuous operation, output voltage of 20,000 V or greater, output current of 1 A or greater, and voltage regulation of better
than 0.01% over a time period of 8 hours.

5.9.3. Magnet power supplies

Especially designed or prepared high-power, direct current magnet power supplies having all of the following characteristics: capable of continuously producing a current output of 500 A or greater at a voltage of 100 V or greater and with a current or voltage regulation better than 0.01% over a period of 8 hours.

6. Plants for the production of heavy water, deuterium and deuterium compounds and equipment especially designed or prepared therefor

INTRODUCTORY NOTE

Heavy water can be produced by a variety of processes. However, the two processes that have proven to be commercially viable are the water-hydrogen sulphide exchange process (GS process) and the ammonia-hydrogen exchange process.

The GS process is based upon the exchange of hydrogen and deuterium between water and hydrogen sulphide within a series of towers which are operated with the top section cold and the bottom section hot. Water flows down the towers while the hydrogen sulphide gas circulates from the bottom to the top of the towers. A series of perforated trays are used to promote mixing between the gas and the water. Deuterium migrates to the water at low temperatures and to the hydrogen sulphide at high temperatures. Gas or water, enriched in deuterium, is removed from the first stage towers at the junction of the hot and cold sections and the process is repeated in subsequent stage towers. The product of the last stage, water enriched up to 30% in deuterium, is sent to a distillation unit to produce reactor grade heavy water, i.e., 99.75% deuterium oxide.

The ammonia-hydrogen exchange process can extract deuterium from synthesis gas through contact with liquid ammonia in the presence of a catalyst. The synthesis gas is fed into exchange towers and to an ammonia converter. Inside the towers the gas flows from the bottom to the top while the liquid ammonia flows from the top to the bottom. The deuterium is stripped from the hydrogen in the synthesis gas and concentrated in the ammonia. The ammonia then flows into an ammonia cracker at the bottom of the tower while the gas flows into an ammonia converter at the top. Further enrichment takes place in subsequent stages and reactor grade heavy water is produced through final distillation. The synthesis gas feed can be provided by an ammonia plant that, in turn, can be constructed in association with a heavy water ammonia-hydrogen exchange plant. The ammonia-hydrogen exchange process can also use ordinary water as a feed source of deuterium.

Many of the key equipment items for heavy water production plants using GS or the ammonia-hydrogen exchange processes are common to several segments of the chemical and petroleum industries. This is particularly so for small plants using the GS process. However, few of the items are available "off-the-shelf". The GS and ammonia-hydrogen processes require the handling of large quantities of flammable,
corrosive and toxic fluids at elevated pressures. Accordingly, in establishing the
design and operating standards for plants and equipment using these processes,
careful attention to the materials selection and specifications is required to ensure
long service life with high safety and reliability factors. The choice of scale is
primarily a function of economics and need. Thus, most of the equipment items
would be prepared according to the requirements of the customer.

Finally, it should be noted that, in both the GS and the ammonia-hydrogen exchange
processes, items of equipment which individually are not especially designed or
prepared for heavy water production can be assembled into systems which are
especially designed or prepared for producing heavy water. The catalyst production
system used in the ammonia-hydrogen exchange process and water distillation
systems used for the final concentration of heavy water to reactor-grade in either
process are examples of such systems.

The items of equipment which are especially designed or prepared for the production
of heavy water utilizing either the water-hydrogen sulphide exchange process or the
ammonia-hydrogen exchange process include the following:

6.1. Water - Hydrogen Sulphide Exchange Towers

Exchange towers fabricated from fine carbon steel (such as ASTM A516) with
diameters of 6 m (20 ft) to 9 m (30 ft), capable of operating at pressures greater than
or equal to 2 MPa (300 psi) and with a corrosion allowance of 6 mm or greater,
especially designed or prepared for heavy water production utilizing the water-
hydrogen sulphide exchange process.

6.2. Blowers and Compressors

Single stage, low head (i.e., 0.2 MPa or 30 psi) centrifugal blowers or compressors
for hydrogen-sulphide gas circulation (i.e., gas containing more than 70% H₂S)
especially designed or prepared for heavy water production utilizing the water-
hydrogen sulphide exchange process. These blowers or compressors have a
throughput capacity greater than or equal to 56 m³/second (120,000 SCFM) while
operating at pressures greater than or equal to 1.8 MPa (260 psi) suction and have
seals designed for wet H₂S service.

6.3. Ammonia-Hydrogen Exchange Towers

Ammonia-hydrogen exchange towers greater than or equal to 35 m (114.3 ft) in
height with diameters of 1.5 m (4.9 ft) to 2.5 m (8.2 ft) capable of operating at
pressures greater than 15 MPa (2225 psi) especially designed or prepared for heavy
water production utilizing the ammonia-hydrogen exchange process. These towers
also have at least one flanged axial opening of the same diameter as the cylindrical
part through which the tower internals can be inserted or withdrawn.

6.4. Tower Internals and Stage Pumps

Tower internals and stage pumps especially designed or prepared for towers for
heavy water production utilizing the ammonia-hydrogen exchange process. Tower internals include especially designed stage contactors which promote intimate gas/liquid contact. Stage pumps include especially designed submersible pumps for circulation of liquid ammonia within a contacting stage internal to the stage towers.

6.5. **Ammonia Crackers**

Ammonia crackers with operating pressures greater than or equal to 3 MPa (450 psi) especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.

6.6. **Infrared Absorption Analyzers**

Infrared absorption analyzers capable of "on-line" hydrogen/deuterium ratio analysis where deuterium concentrations are equal to or greater than 90%.

6.7. **Catalytic Burners**

Catalytic burners for the conversion of enriched deuterium gas into heavy water especially designed or prepared for heavy water production utilizing the ammonia-hydrogen exchange process.

7. **Plants for the conversion of uranium and equipment especially designed or prepared therefor**

INTRODUCTORY NOTE

Uranium conversion plants and systems may perform one or more transformations from one uranium chemical species to another, including: conversion of uranium ore concentrates to UO$_3$, conversion of UO$_3$ to UO$_2$, conversion of uranium oxides to UF$_4$ or UF$_6$, conversion of UF$_4$ to UF$_6$, conversion of UF$_6$ to UF$_4$, conversion of UF$_4$ to uranium metal, and conversion of uranium fluorides to UO$_2$. Many of the key equipment items for uranium conversion plants are common to several segments of the chemical process industry. For example, the types of equipment employed in these processes may include: furnaces, rotary kilns, fluidized bed reactors, flame tower reactors, liquid centrifuges, distillation columns and liquid-liquid extraction columns. However, few of the items are available "off-the-shelf"; most would be prepared according to the requirements and specifications of the customer. In some instances, special design and construction considerations are required to address the corrosive properties of some of the chemicals handled (HF, F$_2$, ClF$_3$, and uranium fluorides). Finally, it should be noted that, in all of the uranium conversion processes, items of equipment which individually are not especially designed or prepared for uranium conversion can be assembled into systems which are especially designed or prepared for use in uranium conversion.
7.1. Especially designed or prepared systems for the conversion of uranium ore concentrates to UO$_3$

EXPLANATORY NOTE

Conversion of uranium ore concentrates to UO$_3$ can be performed by first dissolving the ore in nitric acid and extracting purified uranyl nitrate using a solvent such as tributyl phosphate. Next, the uranyl nitrate is converted to UO$_3$ either by concentration and denitration or by neutralization with gaseous ammonia to produce ammonium diuranate with subsequent filtering, drying, and calcining.

7.2. Especially designed or prepared systems for the conversion of UO$_3$ to UF$_6$

EXPLANATORY NOTE

Conversion of UO$_3$ to UF$_6$ can be performed directly by fluorination. The process requires a source of fluorine gas or chlorine trifluoride.

7.3. Especially designed or prepared systems for the conversion of UO$_3$ to UO$_2$

EXPLANATORY NOTE

Conversion of UO$_3$ to UO$_2$ can be performed through reduction of UO$_3$ with cracked ammonia gas or hydrogen.

7.4. Especially designed or prepared systems for the conversion of UO$_2$ to UF$_4$

EXPLANATORY NOTE

Conversion of UO$_2$ to UF$_4$ can be performed by reacting UO$_2$ with hydrogen fluoride gas (HF) at 300-500$^\circ$C.

7.5. Especially designed or prepared systems for the conversion of UF$_4$ to UF$_6$

EXPLANATORY NOTE

Conversion of UF$_4$ to UF$_6$ is performed by exothermic reaction with fluorine in a tower reactor. UF$_6$ is condensed from the hot effluent gases by passing the effluent stream through a cold trap cooled to -10$^\circ$C. The process requires a source of fluorine gas.

7.6. Especially designed or prepared systems for the conversion of UF$_4$ to U metal

EXPLANATORY NOTE

Conversion of UF$_4$ to U metal is performed by reduction with magnesium (large batches) or calcium (small batches). The reaction is carried out at temperatures above the melting point of uranium (1130$^\circ$C).
7.7. Especially designed or prepared systems for the conversion of UF$_6$ to UO$_2$

EXPLANATORY NOTE

Conversion of UF$_6$ to UO$_2$ can be performed by one of three processes. In the first, UF$_6$ is reduced and hydrolyzed to UO$_2$ using hydrogen and steam. In the second, UF$_6$ is hydrolyzed by solution in water, ammonia is added to precipitate ammonium diuranate, and the diuranate is reduced to UO$_2$ with hydrogen at 820$^\circ$C. In the third process, gaseous UF$_6$, CO$_2$, and NH$_3$ are combined in water, precipitating ammonium uranyl carbonate. The ammonium uranyl carbonate is combined with steam and hydrogen at 500-600$^\circ$C to yield UO$_2$.

UF$_6$ to UO$_2$ conversion is often performed as the first stage of a fuel fabrication plant.

7.8. Especially designed or prepared systems for the conversion of UF$_6$ to UF$_4$

EXPLANATORY NOTE

Conversion of UF$_6$ to UF$_4$ is performed by reduction with hydrogen.